Pollen Morphology of some Thai *Artabotrys* R.Br. (Annonaceae)

Wichan Eiadthong*
Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
*Corresponding Author, E-mail: fforwce@ku.ac.th

Received: Jan 30, 2014
Accepted: Mar 10, 2014

ABSTRACT

The pollen morphology of 15 Thai *Artabotrys* species was investigated under light microscope and scanning electron microscope. The results showed that all Thai *Artabotrys* species are monad pollen, inaperture and apolar. The size of pollen grains are medium to large, ranging from 33.91 ± 0.41 to 55.90 ± 3.19 µm. The pollen shape, classified based on P/E, was divided into 2 groups (subprolate and euprolate): 10 species having subprolate, and 5 species having euprolate. The exine thickness ranged from 1.84 ± 0.12 to 2.66 ± 0.16 µm. The exine ornamentations can be classified into 2 types: perforate-fossulate exine sculpture that has 13 species; and rugulate sculpture that has 2 species. The palynological information could be used for species identification; only 1 species, *A. suaveolens*, which is subprolate in shape and has rugulate exine sculpture, while the others have perforate-fossulate exine sculpture. Thus, the pollen morphology of *Artabotrys* species is a useful additional character for taxonomic data.

Keywords: Pollen morphology, *Artabotrys*, Thailand, Palynology

INTRODUCTION

The members of the genus *Artabotrys* are distributed widely in tropical Asia and Africa (Kessler, 1993), and it consists of about 100 species. Many of them have been used as ornamental and medicinal plants. The habit of the genus *Artabotrys* species is either woody climber or scendent shrub. Craib (1922, 1925) reported 4 species in Thailand, namely; *A. vanprukii* Craib, *A. spinosus* Craib, *A. brevipes* Craib and *A. oblanceolatus* Craib. The Royal Forest Department (2001) listed an additional 5 species occurring in Thailand, namely, *A. burmanicus* DC., *A. harmandii* Finet & Gagnep., *A. hexapetalus* (L.f.) Bhandari, *A. siamensis* Miq., and *A. suaveolens* Blume. Chalermglin (2001) found *A. grandifolius* King., which was a new recorded species in Thai flora.

Furthermore, Insura (2009) listed additional five species different from the previous list (Craib, 1922; 1925, Royal Forest Department, 2001, Chalermglin, 2001, Thongpairoj, 2008),

The morphological characters of the members of the genus Artabotrys are affected to obscure because they are mostly closely and difficult to identify. In addition, all documentaries did not solve to identify by using key to species based on macro-morphological data. Thus, it is necessary to use additional data for species identification and increase information about Thai Artabotrys in Flora of Thailand. This research studied whether variation in pollen morphology of Thai Artabotrys that can be used as a supplement for species identification.

MATERIALS AND METHODS

Pollen samples of 15 Artabotrys species were collected in the field, and the voucher specimens from the field work were deposited in the Forest Bangkok Herbarium (BKF). It was not possible to obtain pollen from three Artabotrys species; A. oxycarpus King, A. lowianus King and A. uniflorus Craib. Their pollen grains were investigated using light microscope (LM) and scanning electron microscope (SEM), according to the LM & SEM described by van der Ham (1990). The palynological data of Artabotrys species were classified into 4 size classes; very small< 10 mm, small 11-25 mm, medium 26-50 mm and large 51–100 mm following by Erdtman (1971). Pollen described terminology following by Punt et al. (1994) and Walker and Doyle (1975). The species list of Artabotrys were examined and showed in Table 1. The pollen shape classified by a ratio between the polar axis and the equatorial axis length (P/E); 1.33-2.00 = euprolate, 1.14-1.33 = subprolate (Erdtman, 1952).

For LM, the pollen grains were mounted directly with basic-fuchsine-glycerin jelly. An Olympus microscope with periplan eyepiece was conducted for the examination of polar and equatorial axis length, exine ornamentation and thickness, amb shapes and mesocolpium diameter. Usually 30 pollen grains of each specimen were accounted and measured using 40X objective lens. The morphology and measurement of pollen grains are given in Table 1. The SEM study, the pollen grains were transferred directly to double-sided sticky tape affixed to stubs and were sputter-coat with platinum. Photomicrographs were taken with a JEOL 200 CXII scanning electron microscope at the laboratories of the Section of Scientific Equipment, Central, Bangkhen Campus of Kasetsart University Research and Development Institute.
RESULTS AND DISCUSSION

Based on LM and SEM observations, pollen grains are monads, large, apolar and inaperture. The pollen shape classified using P/E divided the species into 2 groups (Figure 1): 1) subprolate; consisting of 10 species, namely; *A. aereus*, *A. blumei*, *A. grandifolius*, *A. harmandii*, *A. havilandii*, *A. ob lanceolatus*, *A. siamensis*, *A. spinosus*, *A. suaveolens* and *A. sumatranus*; and 2) euprolate; consisting of 5 species, namely; *A. brevipes*, *A. burmanicus*, *A. hexapetalus*, *A. multiflorus* and *A. vanprukii* (Table 1). The pollen grains are medium to large in size, ranging from 33.91 ± 0.41 to 55.90 ± 3.19 µm, with *A. grandifolius* being the smallest and *A. hexapetalus* the largest (Table 1 and Figure 2). The exine is semi-tectate; and the sculpture is commonly perforate-fossulate (Table 1), and the rugulate sculpture was found in only one species (*A. suaveolens*). Although, a continuous variation is observed in exine sculpture within perforate-fossulate sculpture type, two sub-types can be distinguished: with 9 species having loosely perforate-fossulate sculpture, namely; *A. brevipes*, *A. burmanicus*, *A. harmandii*, *A. hexapetalus*, *A. ob lanceolatus*, *A. siamensis*, *A. spinosus*, *A. sumatranus* and *A. vanprukii*; and 5 species having finely perforate-fossulate sculpture, namely; *A. aereus*, *A. blumei*, *A. grandifolius*, *A. havilandii* and *A. multiflorus*. The exine thickness ranged from 1.84 ± 0.12 to 2.66 ± 0.16 µm, with *A. vanprukii* having the thinnest and *A. aereus* having the thickest (Table 1). The results showed that the information on pollen morphology of 15 Thai *Artabotrys* species could be used for species identification clearly of only 1 species (*A. suaveolens* with rugulate exine sculpture), while all the remaining species had perforate-fossulate exine sculpture.

Description of pollen grain of each *Artabotrys* species

A. aereus Ast: pollen grains monad, apolar, radially symmetrical, diameter 36.49 ± 0.68 µm, subprolate, inaperture. Exine structure semi-tectate, finely perforate-fossulate (Figure 3A), 2.66 ± 0.16 µm thickness.

A. blumei Benth.: pollen grains monads, apolar, radially symmetrical, diameter 36.25 ± 2.5 µm, subprolate, inaperture. Exine structure semi-tectate, finely perforate-fossulate (Figure 3B), 2.50 ± 0.5 µm thickness.

A. brevipes Craib: pollen grains monads, apolar, radially symmetrical, diameter 38.75 ± 1.25 µm, euprolate, inaperture. Exine structure semi-tectate, loosely perforate-fossulate (Figure 3C), 2.34 ± 0.16 µm thickness.

A. burmanicus DC.: pollen grains monads, apolar, radially symmetrical, diameter 54.01 ± 2.62 µm, euprolate, inaperture. Exine structure semi-tectate, loosely perforate-fossulate (Figure 3D), 2.29 ± 0.15 µm thickness.

A. grandifolius King.: pollen grains monads, apolar, radially symmetrical, diameter 33.91 ± 0.41 µm, subprolate, inaperture. Exine structure semi-tectate, finely perforate-fossulate (Figure 3E), 2.75 ± 0.25 µm thickness.

A. harmandii Finet & Gagnep.: pollen grains monads, apolar, radially symmetrical, diameter 48.31 ± 2.43 µm, subprolate, inaperture. Exine structure semi-tectate, loosely perforate-fossulate (Figure 3F), 2.11 ± 0.39 µm thickness.
A. havilandii Ridl.: pollen grains monads, apolar, radially symmetrical, diameter $43.25 \pm 0.94 \mu m$, euprolate, inaperturate. Exine structure semi-tectate, finely perforate-fossulate (Figure 3G), $2.29 \pm 0.15 \mu m$ thickness.

A. hexapetalus (L.f.) Bhandari: pollen grains monads, apolar, radially symmetrical, diameter $55.90 \pm 3.19 \mu m$, euprolate, inaperturate. Exine structure semi-tectate, loosely perforate-fossulate (Figure 3H), $2.29 \pm 0.15 \mu m$ thickness.

A. multiflorus C.E.C.Fisch.: pollen grains monads, apolar, radially symmetrical, diameter $49.13 \pm 3.19 \mu m$, euprolate, inaperturate. Exine structure semi-tectate, finely perforate-fossulate (Figure 3I), $2.29 \pm 0.15 \mu m$ thickness.

A. oblaneolatus Craib: pollen grains monads, apolar, radially symmetrical, diameter $47.81 \pm 0.94 \mu m$, subprolate, inaperturate. Exine structure semi-tectate, loosely perforate-fossulate (Figure 3J), $2.34 \pm 0.16 \mu m$ thickness.

A. siamensis Miq.: pollen grains monads, apolar, radially symmetrical, diameter $52.41 \pm 2.41 \mu m$, subprolate inaperturate. Exine structure semi-tectate, loosely perforate-fossulate (Figure 3K), $2.34 \pm 0.16 \mu m$ thickness.

A. spinosus Craib: pollen grains monads, apolar, radially symmetrical, diameter $44.03 \pm 1.92 \mu m$, subprolate, inaperturate. Exine structure semi-tectate, loosely perforate-fossulate (Figure 3L), $2.14 \pm 0.16 \mu m$ thickness.

A. suaveolens Blume: pollen grains monads, apolar, radially symmetrical, diameter $41.49 \pm 3.25 \mu m$, subprolate, inaperturate. Exine structure semi-tectate, regulate (Figure 3M), $1.98 \pm 0.26 \mu m$ thickness.

A. sumatranus Miq.: pollen grains monads, apolar, radially symmetrical, diameter $47.50 \pm 1.07 \mu m$, subprolate, inaperturate. Exine structure semi-tectate, loosely perforate-fossulate (Figure 3N), $2.32 \pm 0.18 \mu m$ thickness.

A. vanprukii Craib: pollen grains monads, apolar, radially symmetrical, diameter $36.52 \pm 0.25 \mu m$, euprolate, inaperturate. Exine structure semi-tectate, loosely perforate-fossulate (Figure 3O), $1.84 \pm 0.12 \mu m$ thickness.

Table 1 Pollen morphological data of 15 Thai *Artabotrys* species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Size (µm) n=30</th>
<th>Shape</th>
<th>Exine sculpturing</th>
<th>Exine thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. aereus</td>
<td>36.49 ± 0.68</td>
<td>subprolate</td>
<td>finely perforate-fossulate</td>
<td>2.66 ± 0.16</td>
</tr>
<tr>
<td>A. blumei</td>
<td>36.25 ± 2.50</td>
<td>subprolate</td>
<td>finely perforate-fossulate</td>
<td>2.50 ± 0.25</td>
</tr>
<tr>
<td>A. brevipes</td>
<td>38.75 ± 1.25</td>
<td>euprolate</td>
<td>loosely perforate-fossulate</td>
<td>2.34 ± 0.16</td>
</tr>
<tr>
<td>A. burmanicus</td>
<td>54.01 ± 2.62</td>
<td>euprolate</td>
<td>loosely perforate-fossulate</td>
<td>2.29 ± 0.15</td>
</tr>
<tr>
<td>A. grandifolius</td>
<td>33.91 ± 0.41</td>
<td>subprolate</td>
<td>finely perforate-fossulate</td>
<td>2.75 ± 0.25</td>
</tr>
<tr>
<td>A. harmandii</td>
<td>48.31 ± 2.43</td>
<td>subprolate</td>
<td>loosely perforate-fossulate</td>
<td>2.11 ± 0.39</td>
</tr>
<tr>
<td>A. havilandii</td>
<td>43.25 ± 0.94</td>
<td>subprolate</td>
<td>finely perforate-fossulate</td>
<td>2.29 ± 0.15</td>
</tr>
<tr>
<td>A. hexapetalus</td>
<td>55.90 ± 3.19</td>
<td>euprolate</td>
<td>loosely perforate-fossulate</td>
<td>2.29 ± 0.15</td>
</tr>
<tr>
<td>A. multiflorus</td>
<td>49.13 ± 3.19</td>
<td>euprolate</td>
<td>finely perforate-fossulate</td>
<td>2.29 ± 0.15</td>
</tr>
<tr>
<td>A. oblaneolatus</td>
<td>47.81 ± 0.94</td>
<td>subprolate</td>
<td>loosely perforate-fossulate</td>
<td>2.34 ± 0.16</td>
</tr>
<tr>
<td>A. siamensis</td>
<td>52.41 ± 2.41</td>
<td>subprolate</td>
<td>loosely perforate-fossulate</td>
<td>2.34 ± 0.16</td>
</tr>
<tr>
<td>A. spinosus</td>
<td>44.03 ± 1.92</td>
<td>subprolate</td>
<td>loosely perforate-fossulate</td>
<td>2.14 ± 0.16</td>
</tr>
<tr>
<td>A. suaveolens</td>
<td>41.49 ± 3.25</td>
<td>subprolate</td>
<td>rugulate</td>
<td>1.98 ± 0.26</td>
</tr>
<tr>
<td>A. sumatranus</td>
<td>47.50 ± 1.07</td>
<td>subprolate</td>
<td>loosely perforate-fossulate</td>
<td>2.32 ± 0.18</td>
</tr>
<tr>
<td>A. vanprukii</td>
<td>36.52 ± 0.25</td>
<td>euprolate</td>
<td>loosely perforate-fossulate</td>
<td>1.84 ± 0.12</td>
</tr>
</tbody>
</table>

Remark: 1) see in Figure 3.
Figure 1 Two pollen shape types of *Artabotrys* pollen grains under LM observation: subprolate (A) and euprolate (B).

Figure 2 Two exine sculpture types of *Artabotrys* pollen from micrographs under SEM observation: perforate-fossulate (A) and rugulate (B).
Figure 3 SEM micrographs of the exine sculpture types of some Thai Artabotrys species:
A) A. aereus, B) A. blumei, C) A. brevipes, D) A. burmanicus, E) A. grandifolius, F) A. harmandii, G) A. havilandii, H) A. hexapetalus, I) A. multiflorus, J) A. oblaneolatus, K) A. siamensis, L) A. spinosus, M) A. suaveolens, N) A. sumatranus, and O) A. vanprukii.
The pollen sample preparation technique for SEM observation involved using the pollens directly from herbarium specimens or fresh samples, then sputter-coat them with platinum, and then observe their palynological characters. The acetolysis method of Erdtman (1960) could not be used to analyze the Artabotrys pollen because the acetolysis destroyed the shape and exine structure of the pollen grains.

The results in this study conformed with the palynological information of Thongpairoj (2008), who reported on 11 Thai Artabotrys species; namely, A. brevipes, A. burmanicus, A. harmandii, A. hexapetalus, A. multiflorus, A. ob lanceolatus, A. suaveolens, A. siamensis, A. spinosus, A. uniflorus and A. vanprukii. In this study, we analyzed more palynological information than Thongpairoj (2008) and increased the number of species of Thai Artabotrys species, including, A. aereus, A. blumei, A. grandifolius, A. havilandii, and A. sumatranus. Thongpairoj (2008) reported 2 species having rugulate exine sculpture (A. suaveolens and A. ob lanceolatus), while we found only 1 species (A. suaveolens) and A. ob lanceolatus in our study was loosely perforate-fossulate. Using the palynological terminology of Thongpairoj (2008) used same word among microperforate-fossulate and finely perforate-fossulate in this study. The members of the genus Artabotrys are closely macro-morphological characters, that causes unclearly to solve classical taxonomy for species identification.

CONCLUSION

The pollen morphology of 15 Thai Artabotrys species was investigated under LM and SEM observations. The results showed that most Thai Artabotrys species had monad pollen, subprolate to euprolate shapes, inaperture, and the size class of pollen grain was medium to large ranging from 33.91 ± 0.41 to 55.90 ± 3.19 µm. The pollen shape classified using P/E was divided into 2 groups: 1) subprolate; consisting of 10 species, namely, A. aereus, A. blumei, A. grandifolius, A. harmandii, A. havilandii, A. ob lanceolatus, A. siamensis, A. spinosus, A. suaveolens and A. sumatranus; and 2) euprolate; consisting of 5 species, namely, A. brevipes, A. burmanicus, A. hexapetalus, A. multiflorus and A. vanprukii. The exine ornamentation can be classified into 2 types: 1) perforate-fossulate, and 2) rugulate sculpture. Within perforate-fossulate sculpture type, there were 2 subtypes: 9 species having loosely perforate-fossulate sculpture, namely, A. brevipes, A. burmanicus, A. harmandii, A. hexapetalus, A. ob lanceolatus, A. siamensis, A. spinosus, A. suaveolens and A. vanprukii; and 5 species having finely perforate-fossulate sculpture, namely, A. aereus, A. blumei, A. grandifolius, A. havilandii and A. multiflorus. Only 1 Artabotrys species have rugulate sculpture; A. suaveolens. The exine thickness ranged from 1.84 ± 0.12 to 2.66 ± 0.16 µm. The palynological information can be used to identify only 1 species A. suaveolens by its subprolate shape and rugulate exine sculpture, while the remaining species have perforate-fossulate exine sculpture. Thus, the pollen morphology of Artabotrys species can be used as an additional character for taxonomic data.

ACKNOWLEDGEMENTS

This work was partially supported by The TRF/BIOTEC Special Program for Biodiversity Research and the Training Grant BRT T_149013.
REFERENCES

